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Structure Factor and Least-Squares Calculation for Orthorhombic
Systems with Anisotropic Vibrations*
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A set of expressions is presented for calculating structure factors and least-squares coefficients for
orthorhombic structures containing atoms with anisotropic temperature factors. These expressions
are analogous to those previously derived by Rollett and Davies (1955) for monoclinic space groups.

Introduction

The increased availability of high-speed digital com-
puters for crystallographic calculations has made prac-
tical more accurate determinations of atomic para-
meters with the inclusion of anisotropie thermal vibra-
tions of the atoms in the analysis. This increase in
computer utilization has been paralleled by an in-
crease in the use of the least-squares method (Hughes,
1941) for the refinement of the various parameters.
Three features make the least-squares method par-
ticularly suitable for machine computation. First, any
desired weighting function may be prescribed. Second,
totals for the normal equations can be accumulated
in concurrence with the calculation of the structure
factors. Third, the procedure is iterative.

The programming of digital computers for structure
factors and least-squares calculations has followed two
courses. The first course makes use of no lattice sym-
metry; by using redundant parameters and calcu-
lating symmetry equivalent reflections one can obtain
results consistent with any space group (Sparks, Pro-
sen, Kruse, & Trueblood, 1956). Proponents of this
method consider the ease of coding to justify the com-
puting inefficiency encountered in symmetric struc-
tures. Following the other course are those who pro-
gram the computer for specific crystal classes (see, for
example, Lavine & Rollett, 1956), feeling that the
saving of computing time warrants the additional
efforts invested in programming.

With this latter course in mind, Rollett & Davies
(1955), hereafter RD, have derived a set of expres-
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sions that can be used to calculate structure factors
and least-squares coefficients for any monoclinic space
group. It is the purpose of the present paper to present
an analogous, though somewhat more complicated, set
of expressions that are applicable to all orthorhombic
symmetries.In developing these expressions we make
use of the formulations of Trueblood (1956) and the
International Tables (1952).

General (hEl) structure factor

We shall start with the expression for the scattering
factor for a vibrating atom:

fi=foexp — (Bu1h?+ Bask?+ Bssl?+ Biohk +
Biahl+ Bogkl) ,

where fo is the scattering factor for the atom at rest.
As explained by RD, the orthorhombic symmetry
gives rise, in general, to three additional orientations
of the vibrational ellipsoid; and we write the cor-
responding scattering factors:

fa=

fo exp — (B11h2 + Baook?+ Bgsl? + Biohk — Byghl— Bzakl)
fa=

fo exp — (l?uh2 + Book? 4 Bsgl?2 — Bishk + Bighl — B23k‘l)
fa=

fo exp — (B11h2 + Book? + Basl2 — Biohk — Bishl+ Bzgkl)

RD also showed that the structure factor expression
for any orthorhombic space group contains the term
(fi+fo+fa+fd) and three terms in which two of

fe, fsand fs are negative. Accordingly we define, in

Table 1. Scattering factor combinations and their derivatives

Definitions O0E|0B,; OE[0B,,
Ht+fetfatfi=E, E, E,
Hhtfo—fo—fi=E, E, E,
Si—fetfs—fa=E; Ey Ey
Si—fo—fsHfi=E, E, E,

Multiplicative constants obtained
from the differentiation —h? — k2

0E|0By, ©0E|0B,, 0E|0B,, 0E|0B,, 0E|0B
E, E, E, E, E,
E, E, E, E, 0
E, E, E, E, 0
E, E, E, E, 0
- —hk —hl —kl  —sin? /22
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Table 1, the four functions I, Es, B; and B4 and
their derivatives with respect to the temperature
coefficients. (For the isotropic case, where fi=fo=f3=
Ja=foexp (— Bsin 20/A2), E1 =4f, and Ee=E3=E4=0).
We see that each derivative is, except for a multi-
plicative constant, equal to one of the E’s.

We next introduce the trigonometric portions of
the scattering factors. There are eight possible com-
binations of triple products of sines and cosines, which
we call T1-T's; these, together with their products, P,
with the various E’s, are defined in Table 2. The
resulting P’s are now combined in eight different
ways (see Table 3) to form the pertinent coefficients
S81-8s. With the exception of certain classes of reflec-
tions in space groups Fdd2 and Fddd, the structure
factor and all the parameter derivatives for any re-
flection in the orthorhombic system contain as the
principal factor one or another of these S’s.

The cascade of definitions culminates in Table 4,

Table 2. Trigonometric combinations and their products
with the scattering factors

Product with

Definition E, E, E, E,
cos 2nhx.cos 2nky.cos 2nlz = Ty P, P, P, Py
cos 2nhx.cos 2nky.sin 2nlz = Ty, P, P, P3Py
cos 2nhx.sin 2nky.cos 2nlz = T3 Py P, P,y Py
cos 2mhx.sin 2nky.sin 2nlz = T, P, P, P,y Py
sin 2nhe.cos 2nky.cos 2nlz = T Py Py, Py Py
sin 2nhz.cos 2nky.sin 2nlz = Ty Py P,y P,y Py,
sin 2nhx.sin 2aky.cos 2nlz = T, P, P, P,, Py
sin 2nhz.sin 2nky.sin 2nlz = Ty Py Py, Py, P,

Table 3. The eight pertinent terms.
S =P;—P5—P,,— Py Ss=Ps+ P+ Pg— Py,
Sy=Py—Pig+ Py, + Py, Ss=P6+P12"P17+P31
Sy=P;+ Py3— Py + Py 8;=P;— Py +Ppy+ Py
Sy=P,+ Py + Py — Py, Sg=Pg—Pyg—P1yg— Py
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which, in conjunction with Tables 5 and 6, provides
the prescription for choosing the S functions appro-
priate to any class of reflections in any orthorhombic
space group.

We now introduce the relations |F|2=p.2(A2+ B2),
0| F|?|05 =20.2(A0A |05+ BoB|o£) and A= 3g:d;, B=

2 0:Bi. Here g, reflects the space-group multiplicity.
i

For acentric primitive space groups g, has the value
unity; a center of symmetry introduces a factor of
two, the non-primitive lattices 4, C and 1 contribute
a factor of two, while a face-centered lattice F, a
factor of four. We also introduce p; as a population
parameter which, if other than unity, indicates either
partial occupancy of an atomic site or an atom in a
special position having multiplicity less than that of
the space group. By including p; in the least-squares
treatment, one can obtain information concerning
either the over-all scale factor or the degree of oc-
cupancy of the site.

We suggest that when using these tables one start
by finding the appropriate space group listing in
Table 5. From there one obtains the value of g, the
type designation and the group key as a function of
the index parity tests. The lefthand column of Table 4
contains the constant that multiplies both parts (4
and B) of the relation whose A4 term is listed under
‘Functions’. The value of 4; and the derivatives of
A with respect to the various positional and tem-
perature-factor parameters (0A4/0f) can then be se-
lected according to which of the four groups the
particular reflection falls into. The terms involving B,
however, require that we first separate the space
groups into the three crystal classes 222-D, (denoted
Type I in Table 4 and 5), mm2-Ca, (Type II), and
mmm—Dey, (Type 11I). The last two columns of Table 4
provide the key for choosing the correct functions of
B for space groups of Type I and II; since those
of Type III are centrosymmetric, no B term is neces-
sary (provided the origin of coordinates is chosen
at the center of symmetry, as is customary).

Table 4. The prescription for obtaining structure factor and derivative terms for any orthorhombic space group.

Group*
Multiplicative
constants Functions 1 3 4 Type I Type II
1 A; +8; =8y =8, —8; — 0B/ oz
27k 04/ ox —8; +8g —8; —8, — 0B/ 0By, — 0B|0B,,
27k 04 /oy —-8; —8, —8; +8; — 0B|0B;3 — OB|0B,,
2mo;l 0A [0z -8, —8; +8; —8; — 8B/ 8B, - By
—hko; 0A[0B,, -8; =8 +8;, =8, 0B/ 0z —
—hl g5 0A|0B, -8 =8, =8; +8; OB/ oy 0B|ox
~ki o1 0A[0B,, -8y +8; =8 —8, oB|ox OB|oy
1 - +8s =S5 =S, —8 —B; — 0B|0By,
—h%; 04[0By, Same as for 4; and B;
— k%04 0A[0B,, Same as for 4; and B;
—12 0A[0Bg, Same as for 4; and B;
— o1 sin? /A2 0A|oB Same as for 4; and By
1 04| 0g; Same as for A; and B;

* V;or W;replace S; whenever specified by Table 5.

Type II1: The imaginary parts of the expressions are all zero.
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Table 5. A tabulation of the orthorhombic space groups according to class and index parities

Class
—— Group
Space group  Type Q¢ Planes key
P222 I 1 All planes 1
P222, I 1 L even 1
! odd 2
P2,2,2 I 1 (h+k) even 1
(h+k) odd 3
P2,2,2, I 1 (h+k) even, (k+1) even 1
(h+k) even, (k+1) odd 2
(h+k) odd, (k+1) odd 3
(h+k) odd, (k+1) even 4
c222, I 2 (h+k) even, [ even 1
(h+k) even, I odd 2
C222 I 2 (h+k) even 1
F222 I 4 (h+k) even and (k+1) even 1
1222 I 2 (h+Ek+1) even 1
12,2,2, I 2 h even and k even and [ even 1
h even and k odd and ! odd 4
h odd and k even and ! odd 3
h odd and k odd and ! even 2
Pmm2 II 1 All planes 1
Pme2, II 1 ! even 1
! odd 2
Pcc2 II 1 ! even 1
! odd 3
Pma2 II 1 h even 1
h odd 3
Pca2, II 1 h even and ! even 1
h even and ! odd 4
h odd and ! even 3
h odd and ! odd 2
Pnc2 II 1 (k+1) even 1
(k+1) odd 3
Pmn2, 11 1 (h+1) even 1
(h+1) odd 2
Pba2 II 1 (h+k) even 1
(h+k) odd 3
Pra2, II 1 (h+k) even and [ even 1
(h+k) even and ! odd 4
(h+k) odd and ! even 3
(h+k) odd and I odd 2
Pnn2 II 1 (h+k+1) even 1
(h+k+1) odd 3
Cmm?2 II 2 (h+k) even 1
Cme2, II 2 (h+k) even and ! even 1
(h+k) even and ! odd 2
Cec2 II 2 (h+k) even and ! even 1
(h+k) even and ! odd 3
Amm?2 II 2 (k+1) even 1
Abm?2 II 2 (k+1) even, k even 1
(k+1) even, k odd 3
Ama2 II 2 (k+1) even, and h even 1
(k+1) even, and h odd 3
Aba?2 II 2 (k+1) even, (h+k) even 1
(k+!) even, (h+k) odd 3
Fmm?2 II 4 (h+k) even, (k+1) even 1
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Class

PUEEEEEEEEEN

Type

Qc

Table 5 (cont.)

Group

P
(v}
<
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Fdd2

Imm2
Iba2

Iam?2

Pmmm

Prnn

Pcem

Pbam

Pmma

Pnna

Pmna

Pcca

Pbam

Pcen

Pbem

Pnnm

Pmmn

Pben

Pbca

Pnma

II

II
II

II

III
III

III

III

III

III

III

III

III

III

III

III

IIT

III

III

111

4

[

h+k+1=4n, (h+1) even, (k+1) even

h+k+1l=4n+1, (h+1) even, (k+1) even
h+k+l=4n+2, (h+1) even, (k+1) even
h+k+1=4n+3, (h+1) even, (k+1) even

(h+k+1) even

(h+k+1) even and I even
(h+k+1) even and ! odd

(h+k+1) even and h even
(h+k+1) even and h odd

All planes

(h+k) even and (k+1) even
(h+k) even and (k+1) odd
(h+k) odd and (k1) even
(h+k) odd and (k+1) odd

l even
! odd

h even and k even
h even and k odd
h odd and k even
kh odd and % odd

h even
h odd

h even and (k+1) even
h even and (k+1) odd
h odd and (k+1) even
h odd and (k+1) odd

(h+1) even
(h+1) odd

h even and ! even
h even and ! odd
h odd and ! even
h odd and ! odd

(h+k) even
(h+k) odd

(h+k) even and (k1) even
(h+k) even and (h+1) odd
(h+k) odd and (k+1) even
(h+k) odd and (k+1) odd

k even and ! even
k even and I odd
k odd and ! even
k odd and ! odd

(h+k+1) even
(h+k+1) odd

h even and k even
h even and k odd
h odd and k even
h odd and k odd

(h+k) even and I even
(h+k) even and ! odd
(h+k) odd and ! even
(h+k) odd and I odd

(h+k) even and (k+1) even
(h+k) even and (k+1) odd
(h+k) odd and (k+1) even
(h+k) odd and (k+1) odd

(h+1) even and k even
(h+1) even and k odd
(h+1) odd and k even
(h+1) odd and k odd

*

*

GO QO

RO GO ORMNEN COBRN- WHRN-= WwH WM ANDWH W DO GO = N RO B N W B NDWe = W W= -
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Table 5 (cont.)

Class
——— Group
Space group Type 0c Planes key
Cmem III 4 (h+k) even and [ even 1
(h+k) even and I odd 2
Cmca III 4 (h+k) even and (k+1) even 1
(h+k) even and (k+!) odd 2
Cmmm III (h+k) even 1
Ceem’ I1I (h+k) even and [ even 1
(h+k) even and ! odd 3
Cmma 111 4 (h+k) even and h even 1
(h+k) even and h odd 2
Cceea 11X 4 (h+k) even and k even and ! even 1
(h+k) even and k even and [ odd 3
(h+k) even and k odd and ! even 4
(h+k) even and k odd and ! odd 2
Fmmm III (h+k) even and (k+1) even 1
Fddd III h+k=4n,l+h=4n, k+l=4n 1
h+k=4n,l+h=4n+2, k+1l=4n+2 3
h+k=4n+2,l+h=4n+2, k+1l=4n 2
h+k=4n+2,l+h=4n, k+1=4n+2 4
htk=4n,l+h=4n+2, k+1=4n 1t
h+k=4n,l+h=4n, k+l=4n+2 3t
ht+k=4n+2, I+ h=4n, k+1l=4n 2%
ht+k=4n+2,l+h=4n+2, k+l=4n+2 4t
Immm II1 4 (h+k+1) even 1
Ibam I1X (h+%+1) even, I even 1
(h+k+1) even, I odd 3
Ibca I1I 4 (h+k+1) even, h even, k even 1
th+k+1) even, h even, k odd 4
(h+k+1) even, h odd, k even 3
(h+k+1) even, h odd, k& odd 2
Imma IIL 4 (h+k+1) even, k even 1
(h+k+1) even, k& odd 2
* Use V,_g in place of S}_g. 1 Use W,_g4 in place of S,_g.
Table 6. The special terms reguired for space groups ‘ t
Fdd2 and Fddd
V,=05 (S,—8;—S;—Sy) W,=05 (S;—8,+8s—5;) Tie oAy
Vo=05 (S;+8,+8,—S;) Wy=05 (S;+8;—S;—1Sg) . aniso
15O~ -
Vs=05 (S3—8,+8;5+S;) W3=0-5 (S,+48;+S5+Ss) Tropic tropic Type | Type |l
V=05 (S;+8,—8;+S;) Wy=05(—8,+S,+8;—S,) ]
Vs=05 (Sy+8,+85—S5) Wys=0-5(—8y+8; +S5— ) p Type|
; BOB/0.
Vg =0-5(— S+, + S5 +55) We=05 (S, +8;+S,+S,) g ';“ 7oy Bt/
Vy=0-5(—8; — S, +8; — Sg) W,y=0-5(—8;— S, +Ss+5;) (=S15) . L J
Ve=05 (S;—8,+S;+S,) W= 0-5(— Sy — S5 — S5 — Sg) 5:2 oIF|’/0&

Application

As an example illustrating the use of Table 4 and 5,
let us consider the reflections with £ and ! odd in
space group 4bm2-C3:. From Table 5 we find that
this space group is Type II and the reflections are
in group 3; accordingly A;=(—87);, Bi=—(+8s)i,
and (3|F|2/3.813)i= ——2(22)hlgz{A(—S4)7,+B[— (—Ss)@]}

Certain classes of reflections in space groups Fdd2
and Fddd require separate treatment. For them it is
convenient to use additional functions Vi_g or Wi_g,
as defined in Table 6, which are substituted for the

L # 5 |

(9)

f

(b

Key: Box- Compute and store

the contents of the box.
Triangle- Select the appropriate
branch.

Fig. 1. Flow diagrams. (a) A structure factor calculation.
(b) A typical derivative calculation.
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corresponding 8 functions and used as prescribed in
Table 4.

A suggested procedure for calculating structure fac-
tors and derivatives is illustrated in Fig. 1. For each
atom ¢, the trigonometric triple products (7"1-s); are
first calculated. The intermediate products (Pi-s2)i
are then formed, and these are combined to give the
coefficients (Si-g)i. (For an isotropic atom, only Pi_s
need be calculated since P;-g=_81-s). Space group and
index parity tests are then made, and if necessary the
additional functions (Vi-s)i or (Wi_g); are calculated.
The correct structure factor and derivative terms
are then selected in accordance with Table 4.

We have used these orthorhombic expressions and
also the monoclinic expressions of RD as the bases
for two separate structure factor and least-squares
programs for the Burroughs 220 computer. This com-
puter has an access time of approximately 100 micro-
seconds; a complete structure factor least-squares cal-

Acta Cryst. (1961). 14, 1051
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culation, including the collecting of 7 x 7 matrices in-
volving scale and temperature-factor derivatives for
each atom, takes approximately 0-25 seconds per
atom reflection. Isotropic atoms, for which many of
the calculations can be by-passed, require less than
half this time.

One of the authors (A.H.) wishes to acknowledge
the tenure of a Shell Fellowship.
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Least Squares Refinement of the Structure of Gadolinium-Iron Garnet,

Gd;Fe,Fe;0,,

By James E. WEIDENBORNER

International Business Machines Corporation, Yorktown Heights, New York, U.S. A.
(Received 9 February 1961)

X-ray diffraction photographs of gadolinium-iron garnet, Gd,Fe,Fe;0,,, show Laue symmetry
m3m, and systematic extinctions indicate Ia3d as the most probable space group. There are eight
formula weights per unit cell with @ =12-470 +0-005 A. Positions of all ions except O%- are fixed
by the space group. The least-squares method has been applied to refine the oxygen coordinates,
using only 75 structure factors with significant oxygen contributions. The final values obtained for
the coordinates are x = —0-0269, y =0-0550, and z =0-1478. Interionic distances and angles calculated
from these coordinates are nearly identical to the corresponding distances and angles in yttrium—iron
garnet, as predicted by magnetic data.

Difficulties were encountered in the least-squares refinement of the structure. The use of limited
numbers of structure factor data gave rise to large interactions between the temperature factors
of the metal ions. A separate refinement with additional data was necessary to evaluate these

thermal parameters.

Introduction

Gadolinium—iron garnet is one of a series of ferri-
magnetic oxides of general formula RsFe;FesOis,
where R represents yttrium or a rare-earth element
with Z=62 to 71 inclusive. Bertaut & Forrat (1956)
and Geller & Gilleo (1957a) have shown that these
synthetic garnets have the same crystal structure as
that of the natural garnets, which was established by
Menzer (1928) from X.ray powder photographs.
Similar compounds with aluminium or gallium re-
placing iron have also been prepared (Yoder & Keith,

1951; Keith & Roy, 1954). The first detailed X-ray
single crystal work on the synthetic garnets has been
carried out by Geller & Gilleo (19575, 1959), who
have refined the structure of yttrium—iron garnet.
Because detailed information is of importance in
understanding magnetic properties, it appears desir-
able to carry out structure analyses for other garnets
to determine the effects of cation substitution upon
the crystal structure.

The unknown parameters in the garnet structure are
the oxygen—ion coordinates, the oxygen—ion tem-
perature factor, and the temperature factors of the



