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A set of expressions is presented for calculating structure factors and least-squares coefficients for 
orthorhombic structures containing atoms with anisotropic temperature factors. These expressions 
are analogous to those previously derived by Rollett and Davies (1955) for monoclinic space groups. 

I n t r o d u c t i o n  

The increased availabili ty of high-speed digital com- 
puters for crystallographic calculations has made prac- 
tical more accurate determinations of atomic para- 
meters with the inclusion of anisotropie thermal vibra- 
tions of the atoms in the analysis. This increase in 
computer utilization has been paralleled by an in- 
crease in the use of the least-squares method (Hughes, 
1941) for the refinement of the various parameters. 
Three features make the least-squares method par- 
ticularly suitable for machine computation. First, any 
desired weighting function may be prescribed. Second, 
totals for the normal equations can be accumulated 
in concurrence with the calculation of the structure 
factors. Third, the procedure is iterative. 

The programming of digital computers for structure 
factors and least-squares calculations has followed two 
courses. The first course makes use of no lattice sym- 
metry; by using redundant parameters and calcu- 
lating symmetry equivalent reflections one can obtain 
results consistent with any space group (Sparks, Pro- 
sen, Kruse, & Trueblood, 1956). Proponents of this 
method consider the ease of coding to justify the com- 
puting inefficiency encountered in symmetric struc- 
tures. Following the other course are those who pro- 
gram the computer for specific crystal classes (see, for 
example, Lavine & Rollett, 1956), feeling that  the 
saving of computing time warrants the additional 
efforts invested in programming. 

With this latter course in mind, Rollett & Davies 
(1955), hereafter I~D, have derived a set of expres- 
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sions that  can be used to calculate structure factors 
and least-squares coefficients for any monoelinic space 
group. It  is the purpose of the present paper to present 
an analogous, though somewhat more complicated, set 
of expressions that  are applicable to all orthorhombic 
symmetries.In developing these expressions we make 
use of the formulations of Trueblood (1956) and the 
International Tables {1952). 

G e n e r a l  ( h k l )  s t ruc tu r e  f a c t o r  

We shall start with the expression for the scattering 
factor for a vibrating atom: 

f l  =fo exp - (Bl lh  ~ + B22k 2 + B3812 + B12hk + 
Blzh l  + B28kl) , 

where f0 is the scattering factor for the atom at rest. 
As explained by RD, the orthorhombic symmetry  
gives rise, in general, to three additional orientations 
of the vibrational ellipsoid; and we write the cor- 
responding scattering factors: 

f2= 
f0 exp -- (B l lh  2 + B22]~ 2 + Baal 2 + B 1 2 h k -  B l a h l -  B2akl) 

f3= 
fo exp - (B11h 2 + B22k 2 + B33l 2 - B12hk + B 1 3 h l -  B23kl) 

f4= 
f0 exp - (Bl th  ~ + B29k 2 + B3312- B l 2 h k -  B13hl + B23kl) 

I~D also showed that  the structure factor expression 
for any orthorhombie space group contains the term 

(fl+f2+fa+f4) and three terms in which two of 
f2, fa and f4 are negative. Accordingly we define, in 

Table 1. Scattering. factor combinat ions  and  their derivatives 

Definitions ~E/0Bll ~E/aBe2 OE/aBaa OE/~B12 ~E/aBla ~E/~B2a OE/aB 

A + A  +fa -+-A ---- Et  E 1 E 1 E 1 E~ E a E 4 E 1 
A + A  --fa --fa ---- E: E: E9 E 2 E~ E 4 E a 0 
A - A  +fa-A = Ea E a E a E a E a E x E 2 0 
A - A - A + A = E ,  E4 E4 E,  E: Z: E~ 0 

Multiplicative constants obtained 
from the differentiation -- h 2 -- k s -- 1 ~ -- hk -- hl -- kl -- sin s O]]L 2 
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Table 1, the  four functions E , ,  E~, E ~ a n d E ~  and  
their  derivat ives with respect to the  t empera tu re  
coefficients. (For the isotropic case, where f~ = f~  = f3  = 
fa =f0 exp ( - B  sin e0//t~), E t  = 4f~ and Ee = E3 = E4 = 0). 
We see t h a t  each der ivat ive is, except for a multi-  
plicative constant ,  equal to one of the E's .  

We nex t  introduce the  t r igonometr ic  portions of 
the  scattering factors.  There are eight possible com- 
binations of triple products  of sines and cosines, which 
we call T~-T8;  these, together  with their  products ,  P ,  
wit:h the various E 's ,  are defined in Table 2. The 
resulting P ' s  are now combined in eight different 
ways (see Table 3) to form the per t inent  coefficients 
S~-$8.  With  the exception of certain classes of reflec- 
tions in space groups F d d 2  and  F d d d ,  the s t ruc ture  
factor  and all the  pa rame te r  derivat ives for any  re- 
flection in the  or thorhombic system contain as the 
principal factor  one or another  of these S's.  

The cascade of definitions culminates in Table 4, 

Table 2. T r i g o n o m e t r i c  c o m b i n a t i o n s  a n d  their  produc t s  
w i t h  the scat ter ing  fac tors  

Definition 

cos 2~thx. cos 2~ky. cos 2~lz = T 1 
cos 2~thx. cos 2zky. sin 2~tlz = T 2 

cos 2~hx. sin 2~ky.cos 2~lz = T 3 
cos 2~hx.s in  2~ky . s in  2~lz = T 4 
sin 2~hx. cos 2~ky. cos 2~lz = Ta 
sin 2~thx.cos 2~ky . s in  2~lz = T e 
sin 2~hx. sin 2~ky. cos 2~tlz -~ T 7 
sin 2xhx . s in  2~ky.sin 2~lz = T s 

Product with 
^ 

E t E~ E 3 E 4 

Pt P9 Pt7 P25 
P2 Plo P18 P26 
P3 Pll el9 P27 
P4 P12 P20 P28 
P5 P13 P2t P29 
P6 P14 P22 P3o 
P7 Pt5 P23 P31 
P8 P16 P24 P32 

Table 3. T h e  eight pe r t i nen t  terms.  

s~ = P t  - P ta  - P22 - P2s $5 = P5 + P ~  + P~s - 1'32 

$2 = P2 -- Pt6 + P2t + P2~ $6 = P6 + P~u -- P~7 + Pat  

$3 =P3 +P13 --P24 +P26 $7 =P7 --P9 -{- P20 +P30 
Sa = P4 + Pta + P23 -- P25 $8 = P8  -- P~o -- P t 9  -- P29 

which, in conjunction with Tables 5 and 6, provides 
the  prescription for choosing the  S functions appro- 
pr ia te  to any  class of reflections in any  or thorhombic 
space group. 

We now introduce the  relations ]F]9=~c2(A~+B2) ,  

O[F[2 /O~=2Oc~(A~A/~+  B ~ B / ~ )  and A = . ~ , o ~ A ~ ,  B =  
i 

ZomBi. Here ~c reflects the space-group multiplicity.  
i 

For  acentric primit ive space groups ~ has the  value 
un i ty ;  a center of s y m m e t r y  introduces a factor  of 
two, the non-primit ive lattices A, C and I contr ibute  
a factor  of two, while a face-centered latt ice F ,  a 
factor  of four. We also introduce ~ as a populat ion 
paramete r  which, if other  than  uni ty,  indicates either 
par t ia l  occupancy of an atomic site or an a tom in a 
special position having mult ipl ici ty less t han  t h a t  of 
the  space group. By  including ~ in the least-squares 
t rea tment ,  one can obtain information concerning 
either the  over-all scale factor  or the degree of oc- 
cupancy of the site. 

We suggest t h a t  when using these tables one s ta r t  
by  finding the  appropr ia te  space group listing in 
Table 5. F rom there one obtains the  value of 0~, the  
type  designation and  the  group key as a funct ion of 
the index pa r i ty  tests. The lef thand column of Table 4 
contains the  constant  t h a t  multiplies both par ts  (A 
and  B) of the relat ion whose A term is listed under  
'Funct ions ' .  The value of A~ and  the  derivat ives of 
A with respect to the  various positional and tem- 
pera ture-fac tor  pa ramete rs  (OA/O~) can then be se- 
lected according to which of the  four groups the  
par t icular  reflection falls into. The terms involving B ,  
however,  require t h a t  we first separate  the space 
groups into the three crystal  classes 2 2 2 - D ~  (denoted 
Type I in Table 4 and 5), m m 2 - C ~ v  (Type II) ,  and 
m m m - D ~ a  (Type I I I ) .  The last  two columns of Table 4 
provide the key for choosing the  correct functions of 
B for space groups of Type I and I I ;  since those 
of Type I I I  are centrosymmetr ic ,  no B te rm is neces- 
sa ry  (provided the  origin of coordinates is chosen 
a t  the center of symmet ry ,  as is customary) .  

Table 4. T h e  presc r ip t i on  f o r  ob ta in ing  s t ruc ture  fac tor  a n d  der ivat ive  t erms  f o r  a n y  or thorhombic  space group .  

Group* 
Multiplicative ~ - - - - ~ ,  

constants Functions 1 2 3 4 Type I Type II  

1 A~ + S  1 - - S  4 - - S  7 - - S  6 - -  ~ B / ~ z  
2 ~ i h  OA/ax - -S  5 +S s - - S  3 - - S  2 -- aB/OB23 -- aB/aB13 
2 ~ i k  OA/~y - -S  a - - S  2 - S  s +S s -- ~B/~BI3 -- OB/~B23 
2xe~il aA/Oz - - S  2 - - S  3 +S  s - - S  5 -- OB/OB12 - -B  i 

- -hk~t  OA/aB19. - -S  7 - -S  s + S  1 - -S  4 ~B/~z 
- -h l~ i  OA/OBla - -S  6 - S  7 - S  a + S t  OB/Oy OB/ax 
--kl ~ OA/OB23 - -S t  + S  1 - -S  6 --Sv OB/~x OB/ay 

1 - -  + S  s - - S  5 - - S  2 - - S  3 - - B ~  - - O B / O B x 2  

--h2~i aA/OBlt  Same as for Al and Bi  
--k20i OA/OB22 Same as for A~ and Bi  
--12 ~i aA/aBa3 Same as for Ai and Bi 
--Oi s in20/]t 2 ~A/~B Same as for A i and Bl 

1 OA/~Qi Same as for A~ and Bt 

Type I I I :  The * Vi or Wi replace St whenever specified by Table 5. imaginary parts of the expressions are all zero. 
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T a b l e  5. A tabulation of the orthorhombic space groups according to class and index parities 

Class 
r ~ Group  

Space  g roup  T y p e  ~e P l anes  k e y  

P 2 2 2  I 1 

P2221 I 1 

P21212 I 1 

P212121 I 1 

C2221 I 2 

C222 I 2 

2'222 I 4 

1222 I 2 

I212121 I 2 

Pmm2 I I  1 

Pmc21 I I  1 

Pcc2 I I  1 

P m a 2  I I  1 

Pca21 I I  1 

_Pnc2 I I  1 

Pmn21 I I  1 

Pba2 I I  1 

Pna21 I I  1 

Pnn2 II 1 

Cmm2 II 2 

Cmc21 I I  2 

Ccc2 I I  2 

Atom2 I I  2 

Abm2 I I  2 

Area2 I I  2 

Aba2 I I  2 

2'ram2 II 4 

All  p lanes  

l even  
l o d d  

(h + k) even  
(h + k) odd  

(h + k) even,  (k + l) even  
(h + k) even,  (k + l) odd  
(h + k) odd,  (k + l) odd  
(h + k) odd ,  (k + l) even  

(h +/c) even,  1 even  
( h + k )  even ,  1 odd  

(h + k) even  

(h + k) even and (k + l) even 

(h + k + l) even  

h even  a n d  k even  a n d  l even  
h even  a n d / c  odd  a n d  1 odd  
h odd  a n d  k even  a n d  1 o d d  
h o d d  a n d  k odd  a n d  l even  

All  p lanes  

1 even  
l odd  

1 e v e n  
I odd  

h even  
h odd  

h even  a n d  1 even  
h even  a n d  1 odd  
h odd  a n d  1 even  
h o d d  a n d  1 o d d  

(k + l) even  
(k + l) odd 

(h + l) even  
(h + l) odd  

(h + k) even  
(h + k) odd  

(h + k) even  a n d  l even  
(h +/c) even  a n d  1 odd  
(h + k) odd  a n d  l even  
(h + k) odd  a n d  l odd  

(h + k + l) even  
(h+k+l) odd  

(h + k) even  

( h + k )  e v e n  a n d  1 even  
(h + k) even  a n d  1 odd  

(h + k) even  a n d  1 even  
(h + k) even  a n d  l odd  

(k + l) even  

( k + l )  even,  k even  
(k + l) even,  k odd  

(k + l) even,  a n d  h even  
(k + l) even,  a n d  h odd  

(k + l) even,  (h + k) even  
(k + l) even,  (h + k) odd  

(h + k) even,  (k + l) even  
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Space g roup  

Class 
r 

T y p e  ~c 

T a b l e  5 (cont.) 

Group  
k e y  

2'dd2 

Imm2  

Iba2 

Iam2 

P m m m  

P n n n  

Pccm 

Pbam 

P m m a  

Pnna  

P m n a  

Pcca 

Pbam 

Pccn 

Pbcm 

P n n m  

P m m n  

Pbcn 

Pbca 

P n m a  

II 

II 

II 

II 

III 

III 

III 

III 

III 

III 

III 

III 

III 

III 

III 

III 

III 

III 

III 

III 

4 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

h + k + l = 4 n ,  (h+l) even,  ( k + l )  even  
h + k + l = 4 n +  l,  (h+l) even, (k+l)  even 
h + k + l = 4 n + 2 ,  (h+l) even ,  (k-t-l) even  
h W k q - l = 4 n q - 3 ,  (hWl) even,  (kWl) even  

(h T k + l) even  

(h + k -t- l) even  a n d  l even  
(h + k + l) even  a n d  1 odd  

( h + k + l )  even  a n d  h even  
(h + k + l) even  a n d  h o d d  

All p lanes  

(h q- k) even  a n d  (k + l) even  
(h-t-k) even  a n d  (kWl) o d d  
(h + k) odd  a n d  (k + l) even  
( h + k )  odd  a n d  ( k + l )  o d d  

1 even  
1 o d d  

h even  a n d  k even  
h even  a n d  k o d d  
h o d d  a n d  k even  
h o d d  a n d  k o d d  

h even  
h odd  

h even  a n d  (k + l) even  
h even  a n d  (k + l )  odd  
h o d d  a n d  (k + l) even  
h odd  a n d  (k + l) o d d  

(h + l) even  
(h + l) o d d  

h even  a n d  l even  
h even  a n d  1 odd  
h odd  a n d  l even  
h odd  a n d  l odd  

(h + ]c) even  
(h + k) o d d  

(h + k) even  a n d  (h + 1) even  
(h + k) even  a n d  (h + 1) odd  
(h + k) odd  a n d  (h + 1) even  
(h + k) odd  a n d  (h + l) odd  

k even  a n d  l even  
k even  a n d  1 odd  
k odd  a n d  I even  
k odd  a n d  l odd  

( h + k + l )  even  
(hq-k,q-1) o d d  

h even  a n d  k even  
h even  a n d  k odd  
h odd  a n d  k even  
h odd  a n d  k o d d  

(h + k) even  a n d  1 even  
(h + k) even  a n d  l o d d  
(hWk) o d d  a n d  l even  
(h + k) odd  a n d  l odd  

(h q- k) even  a n d  (k q- l) even  
(h Jr k) even  a n d  (k -t- l) o d d  
(h + k) odd  a n d  (k q- l) even  
(h + k) o d d  a n d  (k + l) odd  

(h + l) even  a n d  k even  
(h-t-l) even  a n d  k o d d  
(h + l) odd  a n d  k even  
(h + l) o d d  a n d  k odd  

i 
I* 
3 
3* 

i 

I 
3 

i 
3 

I 

i 
3 
2 
4 

i 
3 

1 
4 
2 
3 

I 
4 

1 
3 
2 
4 

I 
2 

I 
3 
4 
2 

i 
3 

I 
3 
2 
4 

i 
2 
3 
4 

1 
3 

1 
2 
4 
3 

1 
2 
4 
3 

l 
2 
4 
3 

I 
3 
4 
2 
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Table 5 (cont.) 
Class 

^ ~ G r o u p  
Space  g r o u p  T y p e  ~c P l a n e s  k e y  

Cmcm III 4 (h +/c) e v e n  a n d  l e v e n  
(h + k) e v e n  a n d  1 odd  

Cmca III 4 (h+]c) e v e n  a n d  (kTl)  e v e n  
(h Jr It) e v e n  a n d  (]¢ 4- l) o d d  

Cmmm III 4 (h 4- ]c) e v e n  

Cccm" I I I  4 (h + It) e v e n  a n d  l e v e n  
(h + k) e v e n  a n d  1 o d d  

Cmma ] I I  4 (h + It) e v e n  a n d  h e v e n  
(h 4-It) e v e n  a n d  h o d d  

Ccca I I I  4 (h + k) e v e n  a n d  k e v e n  a n d  1 e v e n  
(h 4-k) e v e n  a n d / c  e v e n  a n d  l o d d  
(h + k) e v e n  a n d  # o d d  a n d  1 e v e n  
(h + k) e v e n  a n d  k o d d  a n d  l o d d  

F m m m  I I I  8 (h + It) e v e n  a n d  (]c 4- l) e v e n  

F d d d  I I I  8 h + k=4n,  1+ h=4n,  k +l----4n 

I m m m  III 4 

lbam I I I  4 

Ibca III 4 

Imma III 4 

* U se  VI_ 8 in p lace  of 

h +lc=4n, l + h = 4 n  + 2, I c+l=4n+ 2 
h+Ic=4n+ 2, l + h = 4 n +  2, k + l = 4 n  
h + k = 4 n +  2, l +h=4n ,  # + 1 = 4 n + 2  
h + k = 4 n ,  l + h = 4 n +  2, # + l = 4 n  
h + k = 4 n ,  l +h=4n ,  ]c+l=4n + 2 
h T k = 4 n +  2, l + h=4n,  k T l = 4 n  
h+Ic=4n+ 2, l + h = 4 n +  2, k + l = 4 n +  2 

(h 4-/c 4- l) e v e n  

(h + k + l) even ,  I e v e n  
(h + k + l) even ,  l o d d  

(h+k+l )  even ,  h even ,  k e v e n  
(h + k + l) even ,  h even ,  k o d d  
(h+k+l )  even ,  h odd ,  k e v e n  
(h + k + l) even ,  h odd ,  k o d d  

(h + k + l) even ,  k e v e n  
(h + k + l) even ,  k o d d  

S I _  8. "~ U S e  W l _  8 in p lace  of $1_ 8. 

1 
2 

1 
2 

1 

1 
3 

1 
2 

1 
3 
4 
2 

1 

1 
3 
2 
4 
1¢ 
3t 
2t 
4¢ 

l 

1 
3 

1 
4 
3 
2 

l 
2 

Table 6. The special terms required for space groups 
Fdd2 and Fddd 

W 1 = 0 - 5  ( S  1 - S 2 - S 7 - ~.~8) 

V~=0.5 ( S I + S ~ + S T - S s )  
v3=0.5 ( s a - s , + s ~  +s6) 
V4=O'5 (S3+S,-~5+S~) 
V~=0.5 (s~+84+$5-s~) 
r e = 0 . 5 ( - ~ + s 4 + s s + s 6 )  
V7 = 0 . 5 ( - S  1 - S ~  + S ~ - S s )  

V s = 0 " 5  ( $ 1 - $ 2 + S ~ + S  8) 

W l = 0 . 5  (S1 - $ 4  ~- $ 6 -  87) 
W 2 = 0 . 5  ( S 2 + S a - S s - S s )  

Wa = 0"5 (S2+Sa+Ss+Ss)  
W 4 = 0 . 5 ( - 8 1  + S  4 + S 6 - $ 7 )  

W 5 = O. 5 ( - $ 9  + S a + S 5 - S 8) 4 

W6--0"5  ( $ 1 + $ 4 + $ 6 + $ 7 )  (P 
W 7 = 0 . 5 ( - S  1 - S  4 + S 6 + $ 7 )  

W s = 0.5( - S 2 - S a - S a - S s) 

Application 
As an example i l lustrat ing the use of Table 4 and  5, 
let us consider the  reflections with /c and 1 odd in 
space group Abm2-C~.  From Table 5 we find t h a t  
this space group is Type I I  and the  reflections are 
in group 3 ; accordingly Ai = (--ST)i, B~ = - (+Ss)i ,  
and  (~IFI2/~B13)~ = - 2(22)hlQ~(A ( -S4)~ + B [ -  (-$3)~]}. 

Certain classes of reflections in space groups Fdd2 
and Fddd require separate  t rea tment .  For  them it is 
convenient to use addit ional  functions V1-8 or Wl-s, 
as defined in Table 6, which are subst i tu ted for the 

T1..8 

, t rop~ ~ /  tropic , 

S~.8) 

(b) 

Key: Box- Compute and store 
the contents of the box. 

Triangle- Select the appropriate 
branch. 

(a) 
Fig.  1. F l o w  d i ag rams .  (a) A s t r u c t u r e  f a c t o r  ca l cu la t ion .  

(b) A t y p i c a l  d e r i v a t i v e  ca l cu la t ion .  
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corresponding S functions and used as prescribed in 
Table 4. 

A suggested procedure for calculating s t ructure  fac- 
tors and derivat ives is i l lustrated in Fig. 1. For  each 
a tom i, the  tr igonometric  triple products  (T1-8)~ are 
first  calculated. The in termedia te  products  (P1-82)i 
are then  formed, and  these are combined to give the  
coefficients (Sl-s)i. (For an isotropic atom, only P l - s  
need be calculated since Pz-s  = SI-s). Space group and  
index pa r i ty  tests are then made,  and if necessary the  
addi t ional  functions (Vl_8)i or (Wl-s)i are calculated. 
The correct s t ructure  factor  and der ivat ive te rms 
are then  selected in accordance with Table 4. 

We have used these or thorhombic expressions and 
also the  monoclinic expressions of R D  as the  bases 
for two separate  s t ructure  factor  and  least-squares 
programs for the Burroughs 220 computer.  This com- 
pu te r  has an access t ime of approx imate ly  100 micro- 
seconds; a complete s t ruc ture  factor least-squares cal- 

culation, including the collecting of 7 × 7 matr ices in- 
volving scale and  tempera ture - fac tor  derivat ives for 
each a tom,  takes  approx imate ly  0.25 seconds per 
a tom reflection. Isotropic atoms,  for which m a n y  of 
the  calculations can be by-passed,  require less t han  
half  this time. 

One of the  authors  (A.H.) wishes to acknowledge 
the  tenure  of a Shell Fellowship. 
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X-ray diffraction photographs of gadolinium-iron garnet, Gd3FeeF%Ot2, show Laue symmetry  
m3m, and systematic extinctions indicate Ia3d as the most probable space group. There are eight 
formula weights per unit cell with a = 12.470 ± 0.005/~. Positions of all ions except O ~- are fixed 
by the space group. The least-squares method has been applied to refine the oxygen coordinates, 
using only 75 structure factors with significant oxygen contributions. The final values obtained for 
the coordinates are x -- - 0.0269, y = 0.0550, and z = 0.1478. Interionic distances and angles calculated 
from these coordinates are nearly identical to the corresponding distances and angles in yt t r ium-iron 
garnet, as predicted by magnetic data. 

Difficulties were encountered in the least-squares refinement of the structure. The use of limited 
numbers of structure factor data  gave rise to large interactions between the temperature factors 
of the metal ions. A separate refinement with additional data  was necessary to evaluate these 
thermal parameters. 

I n t r o d u c t i o n  

Gadol inium-iron garne t  is one of a series of ferri- 
magnet ic  oxides of general  formula  RaFe2Fe3012, 
where R represents y t t r i u m  or a ra re-ear th  element 
wi th  Z=62  to 71 inclusive. Be r t au t  & For ra t  (1956) 
and Geller & Gilleo (1957a) have shown tha t  these 
synthet ic  garnets  have the  same crystal  s t ructure  as 
t h a t  of the na tu ra l  garnets,  which was established by  
Menzer (1928) from X - r a y  powder photographs.  
Similar compounds with a luminium or gallium re- 
placing iron have also been prepared  (Yoder & Keith,  

1951; Kei th  & Roy,  1954). The first  detai led X - r a y  
single crystal  work on the  synthet ic  garnets  has been 
carried out by  Geller & Gilleo (1957b, 1959), who 
have  refined the s t ructure  of y t t r i u m - i r o n  garnet .  
Because detai led informat ion is of impor tance  in 
unders tanding magnet ic  properties,  it  appears  desir- 
able to carry  out s t ruc ture  analyses for other  garnets  
to determine the effects of cation subst i tu t ion upon 
the  crystal  s tructure.  

The unknown paramete rs  in the garnet  s t ructure  are 
the oxygen- ion  coordinates, the  oxygen- ion  tem- 
pera ture  factor,  and the t empera tu re  factors of the 


