Structure Factor and Least-Squares Calculation for Orthorhombic Systems with Anisotropic Vibrations*

By Albert Hybl and Richard E. Marsh
Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, California, U.S.A.

(Received 2 November 1960)

Abstract

A set of expressions is presented for calculating structure factors and least-squares coefficients for orthorhombic structures containing atoms with anisotropic temperature factors. These expressions are analogous to those previously derived by Rollett and Davies (1955) for monoclinic space groups.

Introduction

The increased availability of high-speed digital computers for crystallographic calculations has made practical more accurate determinations of atomic parameters with the inclusion of anisotropic thermal vibrations of the atoms in the analysis. This increase in computer utilization has been paralleled by an increase in the use of the least-squares method (Hughes, 1941) for the refinement of the various parameters. Three features make the least-squares method particularly suitable for machine computation. First, any desired weighting function may be prescribed. Second, totals for the normal equations can be accumulated in concurrence with the calculation of the structure factors. Third, the procedure is iterative.

The programming of digital computers for structure factors and least-squares calculations has followed two courses. The first course makes use of no lattice symmetry; by using redundant parameters and calculating symmetry equivalent reflections one can obtain results consistent with any space group (Sparks, Prosen, Kruse, \& Trueblood, 1956). Proponents of this method consider the ease of coding to justify the computing inefficiency encountered in symmetric structures. Following the other course are those who program the computer for specific crystal classes (see, for example, Lavine \& Rollett, 1956), feeling that the saving of computing time warrants the additional efforts invested in programming.

With this latter course in mind, Rollett \& Davies (1955), hereafter RD, have derived a set of expres-

[^0]sions that can be used to calculate structure factors and least-squares coefficients for any monoclinic space group. It is the purpose of the present paper to present an analogous, though somewhat more complicated, set of expressions that are applicable to all orthorhombic symmetries. In developing these expressions we make use of the formulations of Trueblood (1956) and the International Tables (1952).

General (hkl) structure factor

We shall start with the expression for the scattering factor for a vibrating atom:

$$
\begin{gathered}
f_{1}=f_{0} \exp -\left(B_{11} h^{2}+B_{22} k^{2}+B_{33} l^{2}+B_{12} h k+\right. \\
\left.B_{13} h l+B_{23} k l\right)
\end{gathered}
$$

where f_{0} is the scattering factor for the atom at rest. As explained by RD, the orthorhombic symmetry gives rise, in general, to three additional orientations of the vibrational ellipsoid; and we write the corresponding scattering factors:

RD also showed that the structure factor expression for any orthorhombic space group contains the term $\left(f_{1}+f_{2}+f_{3}+f_{4}\right)$ and three terms in which two of f_{2}, f_{3} and f_{4} are negative. Accordingly we define, in

Table 1. Scattering factor combinations and their derivatives

Definitions	$\partial E / \partial B_{11}$	$\partial E / \partial B_{22}$	$\partial E / \partial B_{33}$	$\partial E / \partial B_{12}$	$\partial E / \partial B_{13}$	$\partial E / \partial B_{23}$	$\partial E / \partial B$
$f_{1}+f_{2}+f_{3}+f_{4}=E_{1}$	E_{1}	E_{1}	E_{1}	E_{2}	E_{3}	E_{4}	E_{1}
$f_{1}+f_{2}-f_{3}-f_{4}=E_{2}$	E_{2}	E_{2}	E_{2}	E_{1}	E_{4}	E_{3}	0
$f_{1}-f_{2}+f_{3}-f_{4}=E_{3}$	E_{3}	E_{3}	E_{3}	E_{4}	E_{1}	E_{2}	0
$f_{1}-f_{2}-f_{3}+f_{4}=E_{4}$	E_{4}	E_{4}	E_{4}	E_{3}	E_{2}	E_{1}	0
ive constants obtained							
differentiation							

Table 1, the four functions E_{1}, E_{2}, E_{3} and E_{4} and their derivatives with respect to the temperature coefficients. (For the isotropic case, where $f_{1}=f_{2}=f_{3}=$ $f_{4}=f_{0} \exp \left(-B \sin ^{2} \theta / \lambda^{2}\right), E_{1}=4 f_{1}$ and $\left.E_{2}=E_{3}=E_{4}=0\right)$. We see that each derivative is, except for a multiplicative constant, equal to one of the E 's.

We next introduce the trigonometric portions of the scattering factors. There are eight possible combinations of triple products of sines and cosines, which we call $T_{1}-T_{8}$; these, together with their products, P, with the various E 's, are defined in Table 2. The resulting P 's are now combined in eight different ways (see Table 3) to form the pertinent coefficients $S_{1}-S_{8}$. With the exception of certain classes of reflections in space groups $F d d 2$ and $F d d d$, the structure factor and all the parameter derivatives for any reflection in the orthorhombic system contain as the principal factor one or another of these S 's.

The cascade of definitions culminates in Table 4,

Table 2. Trigonometric combinations and their products with the scattering factors

Definition	$\overbrace{E_{1}}$	E_{2}	E_{3}	E_{4}
$\cos 2 \pi h x \cdot \cos 2 \pi k y \cdot \cos 2 \pi l z=T_{1}$	P_{1}	P_{9}	P_{17}	P_{25}
$\cos 2 \pi h x \cdot \cos 2 \pi k y \cdot \sin 2 \pi l z=T_{2}$	P_{2}	P_{10}	P_{18}	P_{26}
$\cos 2 \pi h x \cdot \sin 2 \pi k y \cdot \cos 2 \pi l z=T_{3}$	P_{3}	P_{11}	P_{19}	P_{27}
$\cos 2 \pi h x \cdot \sin 2 \pi k y \cdot \sin 2 \pi l z=T_{4}$	P_{4}	P_{12}	P_{20}	P_{28}
$\sin 2 \pi h x \cdot \cos 2 \pi k y \cdot \cos 2 \pi l z=T_{5}$	P_{5}	P_{13}	P_{21}	P_{29}
$\sin 2 \pi h x \cdot \cos 2 \pi k y \cdot \sin 2 \pi l z=T_{6}$	P_{6}	P_{14}	P_{22}	P_{30}
$\sin 2 \pi h x \cdot \sin 2 \pi k y \cdot \cos 2 \pi l z=T_{7}$	P_{7}	P_{15}	P_{23}	P_{31}
$\sin 2 \pi h x \cdot \sin 2 \pi k y \cdot \sin 2 \pi l z=T_{8}$	P_{8}	P_{16}	P_{24}	P_{32}

Table 3. The eight pertinent terms.

$$
\begin{array}{ll}
S_{1}=P_{1}-P_{15}-P_{22}-P_{28} & S_{5}=P_{5}+P_{11}+P_{18}-P_{32} \\
S_{2}=P_{2}-P_{16}+P_{21}+P_{27} & S_{6}=P_{6}+P_{12}-P_{17}+P_{31} \\
S_{3}=P_{3}+P_{13}-P_{24}+P_{26} & S_{7}=P_{7}-P_{9}+P_{20}+P_{30} \\
S_{4}=P_{4}+P_{14}+P_{23}-P_{25} & S_{8}=P_{8}-P_{10}-P_{19}-P_{29}
\end{array}
$$

which, in conjunction with Tables 5 and 6 , provides the prescription for choosing the S functions appropriate to any class of reflections in any orthorhombic space group.

We now introduce the relations $|F|^{2}=\varrho_{c}{ }^{2}\left(A^{2}+B^{2}\right)$, $\partial|F|^{2} / \partial \xi=2 \varrho_{c}{ }^{2}(A \partial A / \partial \xi+B \partial B / \partial \xi)$ and $A=\sum_{i} \varrho_{i} A_{i}, \quad B=$ $\sum_{i} \varrho_{i} B_{i}$. Here ϱ_{c} reflects the space-group multiplicity. For acentric primitive space groups ϱ_{c} has the value unity; a center of symmetry introduces a factor of two, the non-primitive lattices A, C and I contribute a factor of two, while a face-centered lattice F, a factor of four. We also introduce ϱ_{i} as a population parameter which, if other than unity, indicates either partial occupancy of an atomic site or an atom in a special position having multiplicity less than that of the space group. By including ϱ_{i} in the least-squares treatment, one can obtain information concerning either the over-all scale factor or the degree of occupancy of the site.
We suggest that when using these tables one start by finding the appropriate space group listing in Table 5. From there one obtains the value of ϱ_{c}, the type designation and the group key as a function of the index parity tests. The lefthand column of Table 4 contains the constant that multiplies both parts (A and B) of the relation whose A term is listed under 'Functions'. The value of A_{i} and the derivatives of A with respect to the various positional and tem-perature-factor parameters $(\partial A / \partial \xi)$ can then be selected according to which of the four groups the particular reflection falls into. The terms involving B, however, require that we first separate the space groups into the three crystal classes $222-D_{2}$ (denoted Type I in Table 4 and 5), $m m 2-C_{2 v}$ (Type II), and $m m m-D_{2 h}$ (Type III). The last two columns of Table 4 provide the key for choosing the correct functions of B for space groups of Type I and II; since those of Type III are centrosymmetric, no B term is necessary (provided the origin of coordinates is chosen at the center of symmetry, as is customary).

Table 4. The prescription for obtaining structure factor and derivative terms for any orthorhombic space group.

Multiplicative constants	Functions	Group*					
		1	2	3	4	Type I	Type II
1	A_{i}	$+S_{1}$	$-S_{4}$	$-S_{7}$	$-S_{6}$	-	$\partial B / \partial z$
$2 \pi \varrho_{i} h$	$\partial A / \partial x$	$-S_{5}$	$+S_{8}$	$-S_{3}$	$-S_{2}$	$-\partial B / \partial B_{23}$	$-\partial B / \partial B_{13}$
$2 \pi \varrho_{i} k$	$\partial A / \partial y$	$-S_{3}$	$-S_{2}$	$-S_{5}$	$+S_{8}$	$-\partial B / \partial B_{13}$	$-\partial B / \partial B_{23}$
$2 \pi \varrho_{i} l$	$\partial A / \partial z$	$-S_{2}$	$-S_{3}$	$+S_{8}$	$-S_{5}$	$-\partial B / \partial B_{12}$	$-B_{i}$
$-h k \varrho_{i}$	$\partial A / \partial B_{12}$	$-S_{7}$	$-S_{6}$	$+S_{1}$	$-S_{4}$	$\partial B / \partial z$	-
-hl ϱ_{i}	$\partial A / \partial B_{13}$	$-S_{6}$	$-S_{7}$	$-S_{4}$	$+S_{1}$	$\partial B / \partial y$	$\partial B / \partial x$
$-k l \varrho_{i}$	$\partial A / \partial B_{23}$	$-S_{4}$	$+S_{1}$	$-S_{6}$	$-S_{7}$	$\partial B / \partial x$	$\partial B / \partial y$
1	-	$+S_{8}$	$-S_{5}$	$-S_{2}$	$-S_{3}$	$-B_{i}$	$-\partial B / \partial B_{12}$

$-h^{2} \varrho_{i}$	$\partial A / \partial B_{11}$
$-k^{2} \varrho_{i}$	$\partial A / \partial B_{22}$
$-l^{2} \varrho_{i}$	$\partial A / \partial B_{33}$
$-\varrho_{i} \sin ^{2} \theta / \lambda^{2}$	$\partial A / \partial B$
$\quad 1$	$\partial A / \partial \varrho_{i}$

* V_{i} or W_{i} replace S_{i} whenever specified by Table 5.

Same as for A_{i} and B_{i}
Same as for A_{i} and B_{i} Same as for A_{i} and B_{i} Same as for A_{i} and B_{i} Same as for A_{i} and B_{i}

Table 5. A tabulation of the orthorhombic space groups according to class and index parities

Space group	Class		Planes	Group key
	Type	ϱ_{c}		
P222	I	1	All planes	1
$P 22{ }_{1}$	I	1	$\begin{aligned} & l \text { even } \\ & l \text { odd } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
$P 2_{1} 2_{1}{ }^{2}$	I	1	$\begin{aligned} & (h+k) \text { even } \\ & (h+k) \text { odd } \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$
$P 2_{1} 2_{1}{ }_{2}$	I	1	$(h+k)$ even, $(k+l)$ even ($h+k$) even, $(k+l)$ odd $(h+k)$ odd, $(k+l)$ odd $(h+k)$ odd, $(k+l)$ even	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$
$C 222_{1}$	I	2	$(h+k)$ even, l even ($h+k$) even, l odd	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
C222	I	2	$(h+k)$ even	1
$F 222$	I	4	$(h+k)$ even and ($k+l$) even	1
1222	I	2	($h+k+l)$ even	1
$I 21_{1} 2_{1}{ }_{1}$	I	2	h even and k even and l even h even and k odd and l odd h odd and k even and l odd h odd and k odd and l even	$\begin{aligned} & 1 \\ & 4 \\ & 3 \\ & 2 \end{aligned}$
Pmm2	II	1	All planes	1
Pmc2 ${ }_{1}$	II	1	l even l odd	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
Pcc2	II	1	l even l odd	$\begin{aligned} & 1 \\ & 3 \end{aligned}$
Pma 2	II	1	h even h odd	$\begin{aligned} & 1 \\ & 3 \end{aligned}$
Pca ${ }_{1}$	II	1	h even and l even h even and l odd h odd and l even h odd and l odd	$\begin{aligned} & 1 \\ & 4 \\ & 3 \\ & 2 \end{aligned}$
Pnc2	II	1	$\begin{aligned} & (k+l) \text { even } \\ & (k+l) \text { odd } \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$
$P m n 2_{1}$	II	1	$\begin{aligned} & (h+l) \text { even } \\ & (h+l) \text { odd } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
Pba2	II	1	$\begin{aligned} & (h+k) \text { even } \\ & (h+k) \text { odd } \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$
$P n a 2_{1}$	II	1	($h+k$) even and l even ($h+k$) even and l odd ($h+k$) odd and l even ($h+k$) odd and l odd	$\begin{aligned} & 1 \\ & 4 \\ & 3 \\ & 2 \end{aligned}$
Pnn2	II	1	$\begin{aligned} & (h+k+l) \text { even } \\ & (h+k+l) \text { odd } \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$
Cmm2	II	2	($h+k$) even	1
$\mathrm{CmC2}_{1}$	II	2	$(h+k)$ even and l even $(h+k)$ even and l odd	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
Ccc2	II	2	$(h+k)$ even and l even ($h+k$) even and l odd	$\begin{aligned} & 1 \\ & 3 \end{aligned}$
Amm2	II	2	$(k+l)$ even	1
Abm 2	II	2	$(k+l)$ even, k even $(k+l)$ even, k odd	$\begin{aligned} & 1 \\ & 3 \end{aligned}$
Ama2	II	2	($k+l$) even, and h even $(k+l)$ even, and h odd	$\begin{aligned} & 1 \\ & 3 \end{aligned}$
Aba 2	II	2	$\begin{aligned} & (k+l) \text { even, }(h+k) \text { even } \\ & (k+l) \text { even, }(h+k) \text { odd } \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$
Fmm 2	II	4	$(h+k)$ even, $(k+l)$ even	1

Table 5 (cont.)

Table 5 (cont.)

Space group	Class			
	$\overbrace{\text { Type }}$	ϱ_{c}	Planes	Group key
Cmcm	III	4	$(h+k)$ even and l even $(h+k)$ even and l odd	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
Cmca	III	4	$(h+k)$ even and $(k+l)$ even $(h+k)$ even and ($k+l$) odd	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
Cmmm	III	4	$(h+k)$ even	1
Ccm'	III	4	$(h+k)$ even and l even $(h+k)$ even and l odd	$\begin{aligned} & 1 \\ & 3 \end{aligned}$
Cmma	III	4	($h+k$) even and h even $(h+k)$ even and h odd	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
$C c c a$	III	4	($h+k$) even and k even and l even $(h+k)$ even and k even and l odd $(h+k)$ even and k odd and l even $(h+k)$ even and k odd and l odd	$\begin{aligned} & 1 \\ & 3 \\ & 4 \\ & 2 \end{aligned}$
F'mmm	III	8	$(h+k)$ even and ($k+l$) even	1
$F \mathrm{~F} d \mathrm{~d}$	III	8	$\begin{aligned} & h+k=4 n, l+h=4 n, k+l=4 n \\ & h+k=4 n, l+h=4 n+2, k+l=4 n+2 \\ & h+k=4 n+2, l+h=4 n+2, k+l=4 n \\ & h+k=4 n+2, l+h=4 n, k+l=4 n+2 \\ & h+k=4 n, l+h=4 n+2, k+l=4 n \\ & h+k=4 n, l+h=4 n, k+l=4 n+2 \\ & h+k=4 n+2, l+h=4 n, k+l=4 n \\ & h+k=4 n+2, l+h=4 n+2, k+l=4 n+2 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 2 \\ & 4 \\ & 1 \dagger \\ & 3 \dagger \\ & 2 \dagger \\ & 4 \dagger \end{aligned}$
Immm	III	4	$(h+k+l)$ even	1
Ibam	III	4	($h+k+l$) even, l even ($h+k+l$) even, l odd	$\begin{aligned} & \text { l } \\ & \mathbf{3} \end{aligned}$
Ibca	III	4	($h+k+l$) even, h even, k even $(h+k+l)$ even, h even, k odd ($h+k+l$) even, h odd, k even ($h+k+l$) even, h odd, k odd	$\begin{aligned} & 1 \\ & 4 \\ & 3 \\ & 2 \end{aligned}$
Imma	III	4	($h+k+l$) even, k even ($h+k+l$) even, k odd	$\begin{aligned} & 1 \\ & 2 \end{aligned}$

* Use V_{1-8} in place of $S_{1-8} . \quad \dagger$ Use W_{1-8} in place of S_{1-8}.

Table 6. The special terms required for space groups $F d d 2$ and $F d d d$
$V_{1}=0.5 \quad\left(S_{1}-S_{2}-S_{7}-S_{8}\right)$
$W_{1}=0.5 \quad\left(S_{1}-S_{4}+S_{6}-S_{7}\right)$
$V_{2}=0.5 \quad\left(S_{1}+S_{2}+S_{7}-S_{8}\right)$
$V_{3}=0.5 \quad\left(S_{3}-S_{4}+S_{5}+S_{6}\right)$
$W_{2}=0.5 \quad\left(S_{2}+S_{3}-S_{5}-S_{8}\right)$
$V_{4}=0.5 \quad\left(S_{3}+S_{4}-S_{5}+S_{6}\right)$
$V_{5}=0.5 \quad\left(S_{3}+S_{4}+S_{5}-S_{6}\right)$
$V_{6}=0.5\left(-S_{3}+S_{4}+S_{5}+S_{6}\right)$
$V_{7}=0.5\left(-S_{1}-S_{2}+S_{7}-S_{8}\right)$
$V_{8}=0.5 \quad\left(S_{1}-S_{2}+S_{7}+S_{8}\right)$
$W_{3}=0.5 \quad\left(S_{2}+S_{3}+S_{5}+S_{8}\right)$
$W_{4}=0.5\left(-S_{1}+S_{4}+S_{6}-S_{7}\right)$
$W_{5}=0.5\left(-S_{2}+S_{3}+S_{5}-S_{8}\right)$
$W_{6}=0.5 \quad\left(S_{1}+S_{4}+S_{6}+S_{7}\right)$
$W_{7}=0.5\left(-S_{1}-S_{4}+S_{6}+S_{7}\right)$
$W_{8}=0.5\left(-S_{2}-S_{3}-S_{5}-S_{8}\right)$

Application

As an example illustrating the use of Table 4 and 5, let us consider the reflections with k and l odd in space group $A b m 2-C_{2 v}^{15}$. From Table 5 we find that this space group is Type II and the reflections are in group 3 ; accordingly $A_{i}=\left(-S_{7}\right)_{\mathrm{i}}, \quad B_{i}=-\left(+S_{8}\right)_{\mathrm{i}}$, and $\left(\partial|F|^{2} / \partial B_{13}\right)_{i}=-2\left(2^{2}\right) h \varrho_{i}\left\{A\left(-S_{4}\right)_{i}+B\left[-\left(-S_{3}\right)_{i}\right]\right\}$.

Certain classes of reflections in space groups $F d d 2$ and $F d d d$ require separate treatment. For them it is convenient to use additional functions V_{1-8} or W_{1-8}, as defined in Table 6, which are substituted for the

Fig. 1. Flow diagrams. (a) A structure factor calculation.
(b) A typical derivative calculation.
corresponding S functions and used as prescribed in Table 4.

A suggested procedure for calculating structure factors and derivatives is illustrated in Fig. 1. For each atom i, the trigonometric triple products $\left(T_{1-8}\right)_{\mathrm{i}}$ are first calculated. The intermediate products $\left(P_{1-32}\right)_{i}$ are then formed, and these are combined to give the coefficients (S_{1-8}) i. (For an isotropic atom, only P_{1-8} need be calculated since $P_{1-8}=S_{1-8}$). Space group and index parity tests are then made, and if necessary the additional functions $\left(V_{1-8}\right)_{\mathrm{i}}$ or $\left(W_{1-8}\right)_{\mathrm{i}}$ are calculated. The correct structure factor and derivative terms are then selected in accordance with Table 4.

We have used these orthorhombic expressions and also the monoclinic expressions of $R D$ as the bases for two separate structure factor and least-squares programs for the Burroughs 220 computer. This computer has an access time of approximately 100 microseconds; a complete structure factor least-squares cal-
culation, including the collecting of 7×7 matrices involving scale and temperature-factor derivatives for each atom, takes approximately 0.25 seconds per atom reflection. Isotropic atoms, for which many of the calculations can be by-passed, require less than half this time.

One of the authors (A.H.) wishes to acknowledge the tenure of a Shell Fellowship.

References

International Tables for X-ray Crystallography (1952), Vol. I. Birmingham: Kynoch Press.
Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
Lavine, L. R. \& Rollett, J. S. (1956). Acta Cryst. 9, 269. Rollett, J. S. \& Davies, D. R. (1955). Acta Cryst. 8, 125. Sparks, R. A., Prosen, R. J., Kruse, F. H. \& Trueblood, K. N. (1956). Acta Cryst. 9, 350. Trueblood, K. N. (1956). Acta Cryst. 9, 359.

Acta Cryst. (1961). 14, 1051

Least Squares Refinement of the Structure of Gadolinium-Iron Garnet, $\mathbf{G d}_{3} \mathrm{Fe}_{2} \mathrm{Fe}_{3} \mathrm{O}_{12}$

By James E. Weidenborner
International Business Machines Corporation, Yorktown Heights, New York, U.S.A.

(Received 9 February 1961)

Abstract

X-ray diffraction photographs of gadolinium-iron garnet, $\mathrm{Gd}_{3} \mathrm{Fe}_{2} \mathrm{Fe}_{3} \mathrm{O}_{12}$, show Laue symmetry $m 3 m$, and systematic extinctions indicate $I a 3 d$ as the most probable space group. There are eight formula weights per unit cell with $a=12 \cdot 470 \pm 0 \cdot 005 \AA$. Positions of all ions except O^{2-} are fixed by the space group. The least-squares method has been applied to refine the oxygen coordinates, using only 75 structure factors with significant oxygen contributions. The final values obtained for the coordinates are $x=-0 \cdot 0269, y=0 \cdot 0550$, and $z=0 \cdot 1478$. Interionic distances and angles calculated from these coordinates are nearly identical to the corresponding distances and angles in yttrium-iron garnet, as predicted by magnetic data.

Difficulties were encountered in the least-squares refinement of the structure. The use of limited numbers of structure factor data gave rise to large interactions between the temperature factors of the metal ions. A separate refinement with additional data was necessary to evaluate these thermal parameters.

Introduction

Gadolinium-iron garnet is one of a series of ferrimagnetic oxides of general formula $R_{3} \mathrm{Fe}_{2} \mathrm{Fe}_{3} \mathrm{O}_{12}$, where R represents yttrium or a rare-earth element with $Z=62$ to 71 inclusive. Bertaut \& Forrat (1956) and Geller \& Gilleo (1957a) have shown that these synthetic garnets have the same crystal structure as that of the natural garnets, which was established by Menzer (1928) from X-ray powder photographs. Similar compounds with aluminium or gallium replacing iron have also been prepared (Yoder \& Keith,

1951 ; Keith \& Roy, 1954). The first detailed X-ray single crystal work on the synthetic garnets has been carried out by Geller \& Gilleo (1957b, 1959), who have refined the structure of yttrium-iron garnet. Because detailed information is of importance in understanding magnetic properties, it appears desirable to carry out structure analyses for other garnets to determine the effects of cation substitution upon the crystal structure.

The unknown parameters in the garnet structure are the oxygen-ion coordinates, the oxygen-ion temperature factor, and the temperature factors of the

[^0]: * Contribution No. 2629 from the Gates and Crellin Laboratories of Chemistry.

